
Utilizing Convolutional Networks to Mimic Physics-Based Fluid 

Simulations
Teng A.1, Duque S.1, Chandhoke R.1

1College of Natural Sciences, The University of Texas at Austin, Austin, Texas

EXECUTIVE SUMMARY
The simulation of fluids is a long-standing problem with a strong foundation in physics research. 

However, performing simulations utilizing these physics equations is extremely time-consuming 

(Zuo 2010 and Wiewel 2019). We propose the alternative of using a machine learning approach 

to tackle the same problem but in a faster time and with acceptable accuracy. Through a 

convolutional neural network, we generated a machine learning model that can effectively 

replicate a subsequent frame of a fluid simulation but has difficulty representing long-term 

results.

INTRODUCTION
Simulating fluid flow is a common problem with many applications such as computer graphics 

or larger scientific simulations. Physics-based fluid simulations are currently incredibly accurate 

but limited due to their restriction of being computationally expensive (Zuo 2010 and Wiewel 

2019). We propose an alternative method of simulating fluid flow using a data-driven approach 

of convolutional neural networks (Tompson 2016). A neural network can be trained to mimic the

calculations performed by physics-based simulators, and once fully trained, the model ideally 

approximates the results of fluid simulations swiftly with sufficient accuracy.

The process of simulating fluid can contain multiple stages, notably, advection - computing the 

movement of fluids - and incompressibility - projecting the fluid based on pressure. The stages of

advection and incompressibility can be computed through a variety of techniques for solving 

partial differential equations: of which, the MacCormack Method (MacCormack 1969) for 

advection and Euler’s equation for incompressibility (Euler 1757) are used throughout the 

simulation. This is an oversimplification of fluid dynamics that neglects more minor, yet 

potentially significant factors: such as viscosity and friction. These factors are ignored as they 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27



are typically negligible and take away from the focus of primarily comparing physics and data-

based solutions. 

Physics simulations can additionally be categorized as Lagrangian methods and Eulerian 

methods (Batchelor 1973). Lagrangian simulations represent fluids as discrete particles and 

simulates the movement of these particles. On the other hand, Lagrangian simulations represent a

grid area fluid travels through; the simulation calculates the movement of fluid passing through 

each grid cell. This work utilizes solely Eulerian methods for fluid simulations.

Previous work has utilized convolutional neural networks to simulate individual stages of fluid 

flow - advection and incompressibility - and combined the separate stages to create a general 

fluid simulation model (Tompson 2016; Kochkov 2019). This work operates outside of the inner 

workings of fluid simulations and learns solely from the initial and resulting states of the 

simulated environment.

An alternative method for modeling physics-based nonlinear partial differential equations, such 

as fluid dynamics, exists by focusing on mimicking the relevant physics equations, instead of a 

simulation that solves these equations. A model’s training can be guided by enforcing realistic 

physical limitations on the potential outputs of the model (Raissi 2019). For example, in an 

enclosed system, a model’s output can be manually adjusted to ensure that the conservation of 

mass holds while a purely data-driven approach would hope the model naturally learns this 

through training.

Our work attempts to similarly mimic a Eulerian fluid simulation using machine learning 

models. The model used will be based off U-Net convolutional neural network architecture 

(Ronneberger 2015). Unlike the works of Tompson et all and Kochkov et all (Tompson 2016; 

Kochkov 2019), the model will treat fluid simulation as a black-box instead of separating the 

model into two parts: an individual model for advection and also incompresibility. The objective 

is produce a fluid flow simulation with acceptable accuracy and less computational time 

compared to a physics-based fluid simulation.

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53



METHODS
Intuitively, we first need a source of data, then a model to process the generated data. The open-

source physics-based fluid simulation PhiFlow is used due to its close integration with Python 

and PyTorch. The PhiFlow simulator acts as the source of the data and the basis of comparison 

for our machine learning models. From Gaussian random noise, PhiFlow randomly generates 

64x64 2D grids of fluid density and velocity, as shown in Figure 1. Furthermore, PhiFlow uses 

fluid density and velocity fields to perform advection and incompressibility calculations. 

Fig. 1: 2D-Grid representations of fluid density and velocity.

Because of the spatial component of the data, convolutional neural networks were chosen to 

process the data. 

54

55

56

57

58

59

60

61

62

63



Fig. 2: U-Net CNN architecture structure.

We input multiple 64x64 images of the horizontal velocity, vertical velocity, and density for the 

convolutional network. The model outputs the next time-step of the simulation in the same 

format. As a result, U-Net is a promising architecture due to identical input and output sizes 

(Ronneberger 2015). A U-Net CNN consists of two stages, downsampling and upsampling. The 

downsampling stage utilizes filters to decrease to spatial size of the data while increasing its 

number of channels. The upsampling stage mirrors the downsampling; the data’s spatial size is 

increased while its channels are decreased. Additionally, the data from each level of the 

downsampling stage is propagated forwarded to be concatenated with the same level equivalent 

in the upsampling stage. The model’s general structure is depicted in figure 2.

RESULTS
The U-Net CNN model was implemented using four downsampling and four upsampling 

convolutional layers. The model was trained over a dataset of 460 samples of 32-frame fluid 

flow simulations for at most 100 epochs, ending by early stopping with a patience of two. 

Utilizing a validation dataset of 52 samples, MSE validation loss decreased over the course of 

training but stabilized above 0.6, as shown in Figure 3.

Fig 3: Training and validation loss with starting filter size of 4, 8, 16, and 32. (From top to

bottom).

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81



Fig 4: Training and validation accuracy with starting filter size of 32, 16, 8, and 4. (From top to

bottom).

The model’s output is solely a single frame after the input frame but multiple subsequent frames 

can be predicted by self-feeding the model’s output into its input at the cost of rapidly shrinking 

confidence. This is clearly demonstrated in Figure 4, as the predicted frames diverge more from 

actual frames the further ahead a prediction is done. 

82

83

84

85

86

87



Predicted data frame: 1 Predicted data frame: 2 Predicted data frame: 3

Actual data frame: 1 Actual data frame: 2 Actual data frame: 3



Predicted data frame: 4 Predicted data frame: 5 Predicted data frame: 6

Actual data frame: 4 Actual data frame: 5 Actual data frame: 6

Figure 5: Predicted Frames vs. Actual Simulation Frames.

An advantage of using a neural network approach is a much faster simulation. After running a 

16-frame simulation on a CPU, the U-Net CNN was able to finish in just 0.09 seconds, while 

PhiFlow finished in 3.14 seconds, as seen in Figure 6. This is exemplary of the time-accuracy 

trade-off and allows the CNN to scale to situations that require quick timing, such as real-time 

simulation.

88

89

90

91

92

93



Total time of model Average time of model 
per frame

Total time of PhiFlow 
simulator

Average time of PhiFlow
simulator per frame

86.7550 ms 5.4090 ms 3088.8727 ms 193.0411 ms

Figure 6: Comparing model and simulator speeds.

When comparing the model’s ability to predict long-term fluid simulation with the simulator’s 

actual results for the same time-frame, the model’s root mean square error dramatically increases

quickly.

Figure 7: UNet RMSE for long-term simulation.

94

95

96

97

98



As seen in figure 7, the simulation accurately predicts the first and, to some extent, second 

frames but diverges heavily from the expected simulation afterwards. The first and second 

frames’ RMSEs are only 0.260 and 1.677 respectively, while the third frame’s RMSE jumps to 

4.416 and increases then on. Interestingly, the model’s output appears to converge back to the 

simulation around the 13th frame despite the input frame having a high RMSE itself. 

Additionally, the peak in RMSE appears in other examples as well but not necessarily on the 

same frame number, as shown in figure 8.

Figure 8: UNet RMSE across multiple testing samples.

DISCUSSION
The 32 filter size U-Net model appears to accurately predict a single time-step frame with 

roughly 93% accuracy. However, upon visual inspection, The U-Net CNN model is largely 

failing to correctly capture the fluid simulation over a longer period of time. 

A possible cause can likely be due to the model’s loss function. The model calculates loss solely 

on a single subsequent frame, while it may be better for the model to predict multiple frames 

ahead, by self-feeding its output to itself, then compare the predicted frames with the simulation 

frames. As a result, the model should then be punished for mispredicting the long-term effects of 

the simulation.

In general, the model alters the input frame for far less than the actual simulation. This could 

potentially be the result of the model overfitting the tail-end frames of every simulation, as after 

roughly 25 frames of the actual simulation the fluid settles and less movement between time 

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118



steps exists. In fact, the model’s effectiveness being dependent on the phase of the simulation is 

evident in the single frame simulation during training and appears consistent across samples. The

model finds difficulty in mimicking the initial frames, improves during the middle frames, and is

best in predicting the final frames of the simulation. 

A potential cause of this could be the simulation being more dynamic in earlier frames, which 

becomes a problem if the model is overfitting the less dynamic ending frames. Alternatively, this

may be the result of differing importance of the stages of fluid simulation. In the earlier frames, 

incompressibility plays a major role in the simulation while it becomes less impactful as the 

simulation progresses. Since we treat the simulation as a black box encompassing both 

incompressibility and advection, the model may be failing to capture the shifting importance of 

incompressibility and advection. As a result, two potential approaches to this problem arise. The 

earliest frames of the simulation can be removed in hopes of having the model focus on 

capturing the advection aspect of the simulation. Alternatively, two models could separately 

capture incompressibility and advection and be combined for simulation while potentially 

maintaining a faster computational time than the physics-based simulator, such as the approach 

conducted by Tompson et all (2016). Overall, the simulation may be too complex for the model 

to accurately capture.

The speed advantage of the data-driven simulation over the physics-based simulation is very 

promising and fulfills the primary motivation of the project. Overall, the potential of data-driven 

simulations is evident but further work needs to be done to improve the accuracy of the model 

for practical use.

CONCLUSION
While the data-driven simulation presented here is almost 35 times faster than physics-based 

models, it’s hard to overlook the issues in accuracy that arise. The data-driven approach diverges

from the expected result in as little as three frames, resulting in a completely different output. 

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143



REFERENCES
Batchelor, G.K. (1973), An introduction to fluid dynamics, Cambridge University Press, ISBN 
978-0-521-09817-5

Euler, Leonhard (1757). "Principes généraux du mouvement des fluides" [The General Principles
of the Movement of Fluids]. Mémoires de l'académie des sciences de Berlin (in French). 11: 
274–315.

Kochkov, D., Smith, J. A., Alieva, Ayya., & et all. (2021). Machine learning-accelerated 
computational fluid dynamics. Proceedings of the National Academy of Sciences. (118)21. 
https://doi.org/10.1073/pnas.2101784118

MacCormack, R. W. (1969), The Effect of viscosity in hypervelocity impact cratering, AIAA 
Paper, 69-354.

Pradeepkumar Girija, Athul & Pednekar, Shourav. (2015). Incompressible Euler Solver using 
Articifial Compressibility Method. 10.13140/RG.2.1.2928.6569.

Raissi, M., Perdikaris, P., Karniadakis, G.E. (2019). Physics-informed neural networks: A deep 
learning framework for solving forward and inverse problems involving nonlinear partial 
differential equations. Journal of Computational Physics, (378)686-707. 
https://doi.org/10.1016/j.jcp.2018.10.045.

Ronneberger, O., Fischer, P., & Brox, T. (2015, October). U-net: Convolutional networks for 
biomedical image segmentation. In International Conference on Medical image computing and 
computer-assisted intervention (pp. 234-241). Springer, Cham.

Shi, X., Chen, Z., Wang, H., Yeung, D., Wong, W., & Woo, W. (2015). Convolutional LSTM 
Network: a machine learning approach for precipitation nowcasting. In Proceedings of the 28th 
International Conference on Neural Information Processing Systems - Volume 1 (NIPS'15)802–
810. https://dl.acm.org/doi/10.5555/2969239.2969329

Tompson, J., Schlachter, K., Sprechmann, P., & Perlin, K. (2016). Accelerating
Eulerian Fluid Simulation with Convolutional Networks. In arXiv [cs.CV]. 
https://dl.acm.org/doi/pdf/10.5555/3305890.3306035

Wiewel, S., Becher, M., & Thuerey, N. (2019, May). Latent space physics: Towards learning the 
temporal evolution of fluid flow. In Computer graphics forum (Vol. 38, No. 2, pp. 71-82).

144

145
146

147
148
149

150
151
152

153
154

155
156

157
158
159
160

161
162
163

164
165
166
167

168
169
170

171
172

https://dl.acm.org/doi/10.5555/2969239.2969329


Zuo, W., & Chen, Q. (2010). Fast and informative flow simulations in a building by using fast 
fluid dynamics model on graphics processing unit. Building and environment, 45(3), 747-757.

173
174


